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SINGLE CHANNEL ANALYSIS OF ELECTROMAGNETIC BRAIN SIGNALS
THROUGH ICA IN A DYNAMICAL SYSTEMS FRAMEWORK

C. J. James and D. Lowe

Neural Computing Research Group, Aston University, Birmingham, United Kingdom

Abstract- This paper introduces a method for extracting
information from single channel recordings of electromagnetic
(EM) brain signals. In a dynamical embedding framework, the
measured electroencephalogram (EEG) and
magnetoencephalogram (MEG) signals are assumed generated
by the non-linear interaction of a few degrees of freedom. In a
three-step process, first an appropriate embedding matrix is
constructed out of a series of delay vectors from the measured
signal. Then independent component analysis (ICA) is
performed on the embedding matrix to decompose the single
channel recording into its underlying independent components
(ICs). The ICs are treated as a convenient expansion basis and
subjective methods are then used to identify components of
interest relevant to the application. These ICs are then
projected back onto the measurement space in isolation. The
method has been applied to single channels of both EEG and
MEG recordings and is shown to isolate, amongst others: i)
artifactual components such as ocular, electrocardiographic
and electrode artifact, ii) seizure components in epileptic EEG
recordings and iii) theta band, tumour related, activity in MEG
recordings.

Keywords — EEG, MEG, ICA, dynamical embedding, single
channel analysis

I. INTRODUCTION

he analysis of the time varying electromagnetic (EM)
fields of the brain provides a valuable insight into the

functioning of the human brain. Signals of interest
range from observations of seizure activity in ictal
electroencephalographic (EEG) recordings, to evoked visual
fields in magnetoencephalographic (MEG) recordings of
normal subjects. It is generally desirable to observe signals
of specific morphology and/or occupying particular
frequency bands. This goal is rarely achievable directly
from naive recordings of EEG and MEG data, for the most
part this is due to the large amount of artifact that
contaminate the ongoing brain activity of interest.

When only a single channel of recording is available, or
when the signal of interest is only present in one or very few
channels of a multi-channel recording, the difficulty of
isolating signals of interest is increased. Many methods
attempt to isolate such activity, using mimetic methods or
broadband filtering methods to remove (or at least attenuate)
those undesirable components in the recordings. Here we
introduce a method whereby it is possible to break down
single channel recordings of the EM brain signals into their
underlying components, irrespective of the components’
origin (physiological or otherwise). The method relies on a
standard implementation of Independent Component
Analysis (ICA), which has caused much interest in the
biosignal analysis community recently [1],[2],[3],[4] and

[5]. Most methods applying ICA to biosignal analysis rely
on spatial (i.e., multichannel) analysis. The method we
introduce can isolate multiple underlying components using
only the temporal information inherent in the single channel
recordings.

II. METHODOLOGY

We introduce a three-step process where; 4: We first
capture the temporal dynamics of the recorded data through
a technique known as dynamical embedding (DE). B: This
is followed by the standard implementation of ICA to
extract multiple independent components (ICs). C:
Subjective methods are then used to identify components of
interest that are then projected back onto the measurement
space in isolation.

A. Dynamical Systems Analysis

Given a sampled time series, through DE we attempt to
uncover as much information as possible about the
underlying generators based only on the measured data [6].
This is based on the assumption that the measured signal is
due to the nonlinear interaction of just a few degrees of
freedom, with additive noise, and suggests the existence of
an unobservable deterministic generator of the observed
data. If the number of degrees of freedom of the underlying
system is given by D, then D can be used as a coarse
measure of system complexity. Takens’ [7] theorem allows
us to reconstruct the unknown dynamical system that
generated the measured time series by reconstructing a new
state space based on successive observations of the time
series.

A DE matrix is constructed from a series of delay
vectors taken from the observed data x(¢), say, where the
state of the unobservable system at time ¢, X(¢), is given by

X(@) = {x(t—r),x(t—Zz’),...,x(t—(m—l)r)}e R, (1)

where 7 is the lag and m is the number of lags or the
embedding dimension. This delay vector describes
observations of the underlying system states, assuming that
the data, x(¢), ¢=1,2,...,.N, are generated by a finite
dimensional, nonlinear system of the form

x(t)= f[x(-1).x(t-2),....xX(t-D)]+e, 2)

where x(f) is real valued, and e, is independently and
identically distributed, and zero mean with unit variance.
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Takens showed that the Euclidean embedding
dimension 7 must be at least as large as D, but in practice
must be such that,

m>2D+1. (3)

When applied to real world data the delay vector size m
actually used needs to be a lot larger than the Euclidean
embedding dimension (7 ) because of dependencies in the
time series data and inherent noise in the system. m needs to
be ‘big enough’ to capture the information content necessary
and if the time series data is heavily correlated, then more
time series samples are needed to make up the required
information content of the delay vector. Once the optimal
delay vector size is found, an embedding matrix is
constructed out of a number of consecutive delay vectors.
The number of delay vectors &, is determined by the length
of the signal to be analysed but in practice must be at least
as large as m. Hence the embedding matrix consists of a
series of delay vectors such that

Xy Xivr Xi+Nt
X = xt'+r xH:ZT xt+(1'\/+1)‘r )
xt+(m—1)r xt+(m)‘r xt+(m+N—1)‘r

Provided the sampling rate of the acquired data is
chosen sensibly, then the practical minimum size for m can
be chosen based on the lowest frequency of interest and the
lag rcan be setto 1, i.e.,

Iy

JL

m 2 ,7=1, (%)

where f, denotes an appropriate sampling frequency,

and f; the lowest frequency of interest in the measured

signal. For the EM brain signals described here, we derived
values for m and 7 in this manner, and over a diverse set of
neurophysiological test signals, the choice of m =90 and
7 =1 proved optimal. If the choice of lag term 7, delay
vector size m and number of lag vectors N is adequate, the
embedding matrix is now rich in information about the
temporal structure of the measured data. If N is set such that
the embedding matrix covers a quasi-stationary signal, it
becomes possible to extract an estimate for the unobserved
degrees of freedom D.

We now choose to represent the data in the embedding
matrix by a convenient spanning basis, in our case we
choose ICA. It is in fact possible to span the embedding
matrix with any basis, such as Principle Component
Analysis (PCA) for example, but we have shown in previous
work [2] that the use of such an orthogonal spanning set as a
means of identifying underlying components in EM brain
signal data yields less useful results than ICA.
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B. Independent Component Analysis

ICA performs a blind separation of statistically
independent sources, assuming linear mixing of the sources
at the sensors, generally using techniques involving higher-
order statistics. Several different implementations of ICA
can be found in the literature; [1],[8],[9] and [10]. This
paper is not meant as an overview of the various ICA
algorithms and we will restrict ourselves to the use of the
Fast ICA algorithm, [10] and [11], mainly because of its
ease of implementation and speed of operation. Further
details about the other algorithms can be obtained from the
given references.

In essence, ICA assumes a set of £ measured data points
v(7) = [vi(t), va(t), ..., v(t)]" to be a linear combination of /
unknown and statistically independent sources s(f) = [sy, s,,
..., ;)" (assuming / < k). The matrix describing the linear
combination of the s(?) is called the mixing matrix, and is
given by the full rank & x/matrix A such that

v(?) = As(?). (6)

The algorithms must find a separating or de-mixing matrix
W such that

s(1) = Wv(1), (7
given the set of observed values in v(?).

In Fast ICA, the ICA problem is posed as an
optimisation problem with the ICs as its solution. The
Kurtosis, or fourth cumulant, that is used to describe the
peakedness of a distribution is defined as

kurt(v) = E{V4}—3(E{V2})2, (8)

for a zero-mean random variable v. Further details about the
Fast ICA algorithm can be found in [10].

ICA brings with it some restrictions, which can be
summarized as, (a) neither energies nor signs of the ICs can
be calculated, and (b) there is no ordering between the ICs.
In our implementation of ICA for EM brain signal analysis
we make assumptions that are in keeping with the general
assumptions governing the application of ICA. In particular
we assume that:

1. The measured EEG/MEG is a linear summation of the
electrical/magnetic activity from various brain regions.

2. The EM field distribution is spatially fixed and only the
electrical ‘strength’ is changing within these regions.

3. Any activity of interest is independent of the ongoing
background EM brain activity. This certainly holds true
for most artifacts and to activity such as seizure activity
- at least early on in the evolution of a seizure.



Performing ICA on the embedding matrix X results in a set
of ICs that form a basis that spans the embedding matrix.
Because Fast ICA assumes a square mixing matrix (i.e., as
many sources as there are sensors are assumed) there are as
many ICs as measurement ‘channels’ — m in this case.
Furthermore, as the ICs are unordered subjective means
must be used to identify ICs of interest.

C. Selecting and Projecting ICs of interest

Selecting relevant ICs is not a trivial task. The nature of
the square mixing matrix means that a great many more
sources will be identified over the expected (smaller)
number of sources underlying a measurement set. In the
case of the embedding matrix of embedding dimension
m=90 there will be a total of 90 ICs — whereas it will be
generally assumed that the number of underlying sources of
interest should number much less than that. Many
subjective methods can be derived that can rank ICs but
ultimately the relevance of each IC depends on the type of
data being analysed and the purpose of the analysis (e.g.,
artifact removal, evoked potential/field analysis,
epileptogenic source analysis, etc.).

Once a subset of p ICs ( p <m ) has been chosen the

ICs must be projected back to the measurement space such
that

Y'=a;s/, )

where s; is the i IC @i =l1, 2, ..., p), a; the corresponding
column of the mixing matrix A and Y’ the resulting
‘embedding matrix’. From Y’ it now becomes possible to
extract the projected time series, y{f), by performing an
average of the rows of the embedding matrix Y’, in order to
unembed the time series, i.€.,

1 m ;
Yilt) == ¥kfenin). (10)
mi

fort=1,2, .., N, where Y ik, @+k-1y Tefers to the element of Y’
indexed by row k and column #+4-1.

III. RESULTS

This section depicts some results obtained on applying
the method to various EM brain signals acquired under
different conditions, from both EEG and MEG recording
modalities. It is intended as a general overview of typical
results obtained when using this method over a diverse set
of EM brain signal recordings.

Fig. 1. depicts a selection of ICs chosen from a single
channel analysis of a 6s epoch of MEG recorded from over
the right temporal lobe of a child with a known tumour in
the right temporal lobe. Multichannel MEG data, sampled
at 2kHz, was recorded with a CTF Systems Inc MEG

MRT 21 1
1.0 2.0 3.0 4.0 5.0 6.0s
Ic 27
IC 61

IC 69

Fig. 1. A 6s segment of ongoing MEG recorded from over right temporal
lobe of a child with a right temporal tumour. IC 27 depicts ECG ac tivity,
IC 61 alpha band activity and IC 69 theta band activity, most probably
due to the tumour.

IC 55

IC 58

Fig. 2. A similar segment of MEG to that of Figure 1, recorded from
over left temporal lobe of the same patient. IC 55 depicts alpha activity
and IC 58 depicts 50Hz contamination. Theta band activity was not
apparent in these ICs.

scanner. Channel MRT 21 from over the right temporal
lobe was chosen to assess the capability of the method in
isolating both artifacts and other signals of interest. The
data was down sampled to a sampling rate of 200Hz, and a
dynamical embedding matrix was constructed with 7=1,
m =90 and N =1300samples. Fast ICA was then applied
to the embedding matrix, and each resulting IC was
projected back to the measurement space in the manner
described in the previous section. The choice of the most
relevant ICs was based on the subjective analysis of the
wave morphology and on derived spectrograms of each
projected IC. In Fig. 1. IC 27 depicts ECG contamination,
IC 61 depicts alpha band activity and IC 69 depicts theta
band activity — which we attribute to the underlying tumour.

Fig. 2. depicts a similar analysis on the same set of
recordings, this time the contralateral channel to the
previous right temporal channel is analysed. This channel
shows gross 50Hz contamination that is isolated in IC 58, as



well as alpha band activity given by IC 55. There does not
appear to be any IC depicting theta band activity in this
contralateral channel.

Fig. 3. depicts a single channel (T9) of a 20s segment of
ictal EEG (average reference) showing a seizure of focal left
temporal lobe onset occurring 7-8s into the segment. Initial
channels involved are channels T3, TS5, T9 & F9, the seizure
then spreads to wider regions over the next few seconds. In
previous work [12] we have performed ensemble ICA on
this seizure and amongst other artifactual components,
ensemble ICA isolated 3 distinct seizure related IC’s — each
with a slightly different topography and morphology (see
[12] for further details). Fig. 3. depicts a number of ICs of
interest projected back to the measurement space. IC 68, IC
82 and IC 88 each depict waveforms which we attribute to
seizure components — based on their morphology, their time
of onset and their spectral characteristics. The temporal
distribution of the three components, as well as their
morphologies, matches the three components obtained from
ensemble ICA.

T9
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Fig. 3. Performing dynamical embedding followed by ICA on channel T9
(left temporal lobe) of a left temporal onset seizure. IC 68, IC 82 and IC 88
each depict waveforms which we attribute to seizure components. The
temporal distribution of the three components as well as their morphologies
matches three components obtained from ensemble ICA.

IV. DISCUSSION

The use of a dynamical systems framework followed by
ICA has been shown to yield meaningful results when
applied to various sets of recorded EM brain activity. The
method lends itself well to applications where multichannel
recordings are not available or are undesirable.
Furthermore, it is suitable in situations where multichannel
recordings are available but where the signals of interest are
limited to localised areas and/or contribute only a small
percentage of the overall power of the multichannel
recordings. In the latter case, it is highly unlikely that
ensemble ICA on such multichannel data will successfully
extract such relatively small components.

The method is particularly useful in isolating artifactual
components such as ocular artifact in both EEG and MEG,
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or ECG artifact in MEG recordings — amongst others.
When applied to epileptiform EEG data the method
manages to isolate multiple seizure components underlying
single channel observations of seizures. The method also
identifies normal rhythms such as alpha activity, in EM
brain signals, and was particularly successful in identifying
slow theta activity in MEG data, most probably due to an
underlying tumour.

V. CONCLUSION

Overall, the method 1is successful 1is isolating
components from single channel data. At this stage, the
choice of ‘relevant’ components is still highly subjective —
however this is a current problem with all ICA applications
to neurophysiological data and not particular to just this
method. This notwithstanding, it is a very powerful method
that can extract information that is not apparent in the
strongly contaminated EM brain signal recordings,
especially in situations where multichannel data is either
unavailable or its use is undesirable.
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